
I by a contractor of th~ U. S. Government
,'d.r contract No. W·31·1 Q9-ENG·38.
l'l.ccordingly, the U. S. Government retains a
nonexclusive. royalty~free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

1 Introduction

User's Manual for elegant
Program Version 12.4

Manual Version 1

Advanced Photon Source

Michael Borland-6 May 1993

LS-231

elegant stands for "ELEctron Generation ANd Tracking," a somewhat out-of-date description
of a fully 6D accelerator program that now does much more than generate particle distributions
and track them. elegant, written entirely in the C programming language[lJ, uses a variant of
the MAD[2] input format to describe accelerators, which may be either transport lines, circular
machines, or a combination thereof. Program execution is driven by commands in a namelist
format.

This document describes the features available in elegant, listing the commands and their
arguments. The differences between elegant and MAD formats for describing accelerators are
listed. A series of examples of elegant input and output are given. Finally, appendices are
included describing the post-processing programs.

1.1 Program Philosophy

For all its complexity, elegant is not a stand-alone program. For example, most of the output is not
human-readable, and elegant itself has no graphics capabilities. These tasks are handled by a suite
of post-processing programs that serve both elegant and other physics programs. The program
awe (Access With Ease) is a data-extraction and manipulation program using a self-describing data
format. awe will allow one to make customized tables containing data computed by elegant. This
is, however, the least used of its capabilities. awe permits the user to define new data elements
in terms of those present in a data file, and to process the data to extract overall properties (e.g.,
averages). Rather than printing the data in endless tables, awe is primarily used to put user-selected
data pairs into a format acceptable by the general-purpose graphics program mpl (Multi-PLot).

mpl is itself not a stand-alone program, in that it is one of a group of about 30 programs
sharing the mpl data format. These programs, collectively called the mpl Scientific Toolkit, allow
manipulation of data beyond what is possible with awe. For example, several of the programs from
the Toolkit permit one to perform arithmetic or higher operations using data files as terms in an
equation. Other commonly used programs generate histograms and do statistical analysis.

Setting up for an elegant run thus involves more than creating input files for elegant per se.
A complicated run will typically involve creation of a post-processing command file that processes
elegant output and puts it in the most useful form, typically a series of graphs. Users thus have
the full power of awe, the Toolkit, and the resident command interpreter (e.g., the UNIX shell) at
their disposal. The idea is that instead of continually rewriting the physics code to, for example,
make another type of graph or squeeze another item into a crowded table, one should allow the
user to tailor the output to his specific needs using a set of generic post-processing programs. This
approach has been quite successful, and is believed particularly suited to the constantly changing
needs of research.

1

1.2 Capabilities of elegant

elegant started as a tracking code, and it is still well-suited to this task. elegant tracks in
the 6-dimensional phase space (x,x',y,y',s,O'), where x (y) is the horizontal (vertical) transverse
coordinate, primed quantities are slopes, s is the total distance traveled, and 8 is the fractional
momentum deviation(3). Note that these quantities are commonly referred to as (x, xp, y, yp,
s, dp) in the namelists, accelerator element parameters, and output files. ("dp" is admittedly
confusing-it is supposed to remind the user of L"\P jP 0')

Tracking may be performed using matrices (of selectable order), canonical kick elemen ts, numer
ically integrated elements, or any combination thereof. For most elements, second-order matrices
are available; matrix concatenation can be done to any order up to third. Canonical kick ele
ments are available for bending magnets, quadrupoles, sextupoles, and higher-order multipoles; all
of these elements also support optional classical synchrotron radiation losses. Among the numer
ically integrated elements available are extended-fringe-field bending magnets and traveling-wave
accelerators. A number of hybrid elements exist that have first-order transport with exact time
dependence, e.g., RF cavities. Some of the more unusual elements available are third-order alpha
magnets[4, 5], time-dependent kicker magnets, voltage-ramped RF cavities, beam scrapers, and
beam-analysis "screens."

A wide variety of output is available from tracking, including centroid and sigma-matrix output
along the accelerator. In addition to tracking internally generated particle distributions, elegant
can track distributions stored in external files, which can eit,her be generated by other programs
or by previous elegant runs. Because elegant uses awe format for reading in and writing out
particle coordinates, it is relatively easy to interface elegant to other programs using files that can
also be used with awe to do post-processing for the programs. Among the programs that have been
interfaced to elegant in this fashion are rfgun, spiffe, MASK, PARMELA, and EGS4; none of
this involved any modification of elegant itself.

elegant allows the addition of random errors to virtually any parameter of any accelerator el
ement. One can correct the orbit (or trajectory), tunes, and chromaticity after adding errors, then
compute Twiss parameters, track, or perform a number of other operations. Unlike many other
programs, elegant allows one to make a single run simulating an arbitrary number of randomiza
tions of an accelerator. Analysis of the resulting data is made relatively painless by use of the awe
format for most output. Hence, instead of doing a few simulations with a few seed numbers, the
user can do hundreds or even thousands of randomizations of one accelerator to get an accurate
representation of the statistics, with no more work invested than in doing a few simulations[6J.

In addition to randomly perturbing accelerator elements, elegant allows one to systematically
vary any number of elements in a multi-dimensional grid. As before, one can track or do other
computations for each point on the grid. This is a very useful feature for the simulation of experi
ments, e.g., emittance measurements involving beam-size measurements during variation of one or
more quadrupoles[6].

Like many accelerator codes, elegant does accelerator optimization. While elegant is not
designed to replace first-order matching codes like MAD, it will fit the first-order matrix. Of more
interest is the ability to optimize results of tracking using a user-supplied function of the final
beam and transport parameters. This permits solution of a wide variety of problems, from match
ing a kicker bump in the presence of nonlinearities to optimizing dynamic aperture by adjusting
sextu poles.

elegant provides several methods for determining accelerator aperture, whether dynamic or
physical. One may do straightforward tracking of an ensemble of particles that occupies at uniform
grid in (x, y) space. A more efficient variant of this procedure involves tracking a series of constant-

2

x lines of particles with fixed y values, with elimination of any given y value whenever a stable
particle is found. Finally, one may use a single-particle search method that can locate the aperture
for a series of y values, to a predefined resolution in x.

In addition to using analytical expressions for the transport matrices, elegant supports compu
tation of the first-order matrix and linear optics properties of a circu1ar machine based on tracking.
A common application of this is to compute the tune and beta-function variation with momentum
offset by single-turn tracking of a series of particles. This is much more efficient than, for example,
tracking and performing FFTs (though elegant will do this also). This both tests analytical ex
pressions for the chromaticity and allows computations using accelerator elements for which such
expressions do not exist (e.g., a numerically integrated bending magnet with extended fringe fields).

A common application of random error simulations is to set tolerances on magnet strength
and alignment relative to the correctability of the closed orbit. A more efficient way to do these
calculations is to use correct-orbit amplification factors[6]. elegant the computes amplification
factors and functions for corrected and uncorrected orbits and trajectories pertaining to any element
that produces an orbit or trajectory distortion. It simultaneously computes the amplification
functions for the steering magnets, in order to determine how strong the steering magnets will need
to be.

2 N amelist Command Dictionary

The main input file for an elegant run consists of a series of n<1melists, which function as commands.
Most of the namelists direct elegant to set up to run in a certain way. A few are "action" commands
that begin the actual simulation. FORTRAN programmers should note that, unlike FORTRAN
namelists, these namelists need not come in a predefined order; elegant is able to detect which
namelist is next in the file and process appropriately.

Each namelist has a number of variables associated with it, which are used to control details of
the run. These variables come in three data types: (1) long, for the C long integer type, (2) double)
for the C double-precision floating point type, and (3) STRING, for a character string enclosed in
double quotation marks. All variables have default values, which are listed on the following pages.
STRING variables often have a default value listed as NULL, which means no data; this is quite
different from the value "", which is a zero-length character string. long variables are often used
as logical flags, with a zero value indicating false and a non-zero value indicating true.

On the following pages the reader will find individual descriptions of each of the namelist
commands and their variables. Each description contains a sequence of the form

&<namelist-name>
<variable-type> <variable-name> = <default-value>;

&end

This summarizes the parameters of the namelist. Note, however, that the namelists are invoked in
the form

&<namelist-name>
[<variable-name> = <value> ,J
[<array-name>[<index>J = <value> [,<value> ... J ,J

3

&end

The square-brackets enclose an optional component. Not all namelists require variables to be given
the defaults may be sufficient. However, if a variable name is given, it must have a value. Values
for STRING variables must be enclosed in double quotation marks. Values for double variables may
be in floating-point, exponential, or integer format (exponential format uses the 'e' character to
introduce the exponent).

Array variables take a list of values, with the first value being placed in the slot indicated by
the subscript. As in C, the first slot of the array has subscript 0, not 1. The namelist processor
does not check to ensure that you do not put elements into nonexistent slots beyond the end of the
array; doing so may cause the processor to hang up or crash.

Wildcards are allowed in a number of places in elegant, awe, and the mpl Toolkit. The wildcard
format is very similar to that used in UNIX:

@ * - stands for any number of characters, including none.

@I ? - stands for any single character.

• [<list-of-characters>] - stands for any single character from the list. The list may
include ranges, such as a-z, which includes all charac~ers between and including 'a' and 'z'
in the ASCII character table.

The special characters *, ?, [, and] are entered literally by preceeding the character by a backslash
(e.g., *).

In many places where a filename is required in an elegant namelist, the user may supply a
so-called "incomplete" filename. An incomplete filename has the sequence "%s" imbedded in it, for
which is substituted the "rootname." The rootname is by default the filename (less the extension)
of the lattice file. The most common use of this feature is to cause elegant to create names for
all output files that share a common filename but differ in their extensions. Post-processing can
be greatly simplified by adopting this naming convention, particularly if one consistently uses the
same extension for the same type of output. Recommended filename extensions are given in the
lists below.

When elegant reads a namelist command, one of its first actions is to print the namelist back
to the standard output. This printout includes all the variables in the namelist and their values.
Occasionally, the user may see a variable listed in the printout that is not in this manual. These are
often obsolete and are retained only for backward compatibility, or else associated with a feature
that is not fully supported. Use of such "undocumented features" is discouraged.

4

amplification_factors

® type: action command.

® function: compute corrected and uncorrected orbit amplification factors and functions.

&lification_factors
STRING output = NULL;

&end

STRING uncorrected_orbit_function = NULL;
STRING corrected_orbit_function = NULL;
STRING kick_function = NULL;
STRING name = NULL;
STRING type = NULL;
STRING item = NULL;
STRING plane = NULL;
double change = 1e-3;
long number_to_do = -1;
double maximum_z = 0;

® output - The (incomplete) name of a file for text output. Recommended value: "%s.af" .

• uncorrected_orbit_function - The (incomplete) name of a file for an mpl-format output
of the uncorrected-orbit amplification function. Recommended value: a%s.uof".

® corrected_orbit_function - The (incomplete) name of a file for an mpl-format output of
the corrected-orbit amplification function. Recommended value: "%s.cof".

® kick_function - The (incomplete) name of a file for an mpl-format output of the kick
amplification function. Recommended value: "%s.kaf".

® name - The optionally wildcarded name of the orbit-perturbing elements.

* type - The optional type name of the the orbit-perturbing elements.

@ item - The parameter of the elements producing the orbit.

® plane - The plane ("h" or "v") to examine.

® change - The parameter change to use in computing the amplification .

• number_to_do - The number of elements to perturb.

® maximum_z - The maximum z coordinate of the elements to perturb.

5

@ type: action command.

@ function: find the approximate first-order matrix and related quantities for an accelerator by
tracking.

&analyze_map

&end

STRING output = NULL;
double delta_x = 1e-6;
double delta_xp = 1e-6;
double delta_y = 1e-6;
double delta_yp = 1e-6;
double delta_s = 1e-6;
double delta_dp = 1e-6;
long center_on_orbit = 0;
long verbosity = 0;

@ output - The (incomplete) name of a file for awe-format output.

Recommended value: "%s.ana".

File contents: A series of dumps, each consisting of a single data point containing the
centroid offsets for a single turn, the single-turn R matrix, the matched Twiss parameters,
tunes, and dispersion functions.

@ del ta_X - The amount by which to change the quantity X in computing the derivatives that
give the matrix elements.

® center _on_orbi t - A flag directing the expansion to be made about the closed orbit instead
of the design orbit.

(I verbosity - The larger this value, the more output is printed during computations.

6

awe beam

® type: setup command.

II function: set up for tracking of particle coordinates stored in an awe-format file.

&awe_beam
STRING input = NULL;
STRING input_type = "elegant";
long n_particles_per_ring = 1;
long one_random_bunch = 0;
long prebunched = 0;
long sample_interval = 1;
long n_dumps_to_skip = 0;
long center_transversely = 0;
double sample_fraction = 1;
double p_lower = 0.0;
double p_upper = 0.0;
long use_multipliers = O· ,
double
double
double

x_multiplier = 1.0;
xp_multiplier = 1.0;
y_multiplier = 1.0;

double yp_multiplier = 1.0;
double dp_multiplier = 1.0;

&end

II input - Name of an awe-format file containing coordinates of input particles.

II input_type May be "elegant", "spiffe", or "mask", indicating the name of the program
that wrote the input file. The expected data quantities for the different types are:

elegant: (x,xp,y,yp, t,p), where x and yare in meters, xp = x' and xp = y' are dimen
sionless, t is in picoseconds, and p = jJr is the dimensionless momentum.

spiffe: (r,z,pr,pz,t), where rand z are in meters, pr=(3r" pz=(3z" and t is in
picoseconds.

MASK: (xl,x2,betal,beta2,t,p), where xl and x2 are in meters, t is in picoseconds,
and p = (3,. Direction 1 is longitudinal (z) and direction 2 is transverse (r).

II n_particles_per_ring
for each ring of charge.

For spiffe or mask data, gives the number of particles to generate

41 one_random_bunch - A flag indicating whether, for spiffe or mask data, a new random
distribution should be calculated for each step of the simulation.

II prebunched - A flag indicating, if zero, that the entire file is one "bunch," and otherwise
that each awe dump in the file is a different bunch.

® sample_interval - If non-zero, only every sample_intervalth particle is used.

CI n_dumps_ to_skip - Number of awe dumps to skip at the beginning of the file.

7

@ center_transversely - If non-zero, the transverse centroids of the distribution are made
to be zero.

& sample_fraction - If non-unity, the randomly selected fraction of the distribution to use.

@Il p_lower, p_upper - If different, the lower and upper limit on /3, of particles to use.

o use_multipliers - If non-zero, the phase-space coordinates of each particle are multi
plied by the factors x_multiplier, xp_multiplier, y _multiplier, yp_multiplier, and
dp_multiplier, as appropriate.

8

bunched beam

<$I type: setup command.

® function: set up for tracking of particle coordinates with various distributions.

&bunched_beam

&end

STRING bunch ::: NULL;
long n_particles_per_bunch ::: 1· ,
double time_start ::: 0;
STRING matched_to_cell = NULL;
double emit_x = 0;
double beta_x = 1.0;
double alpha_x = 0.0;
double eta_x = 0.0;
double etap_x ::: 0.0;
double emit_y :::: 0;
double beta_y = 1.0;
double alpha_y = 0.0;
double eta_y = 0.0;
double etap_y = 0.0;
double Po = 5.0;
double sigma_dp = 0.0;
double sigma_s = 0.0;
double dp_s_coupling = 0;
long one_random_bunch = 1;
long limit_invariants = 0;
long symmetrize = 0;
long enforce_rms_values[3J = {O, 0, a};

double distribution_cutoff[3J = {2, 2, 2};
STRING distribution_type [3J ::: {f1gaussian", "gaussian", f1gaussian fl

};

double centroid[6J ::: {O.O, 0.0, 0.0, 0.0, 0.0, O.O};

e bunch - The (incomplete) name of an awe-format file to which the phase-space coordinates
of the bunches are to be written.

Recommended value: "%s.bun".

File contents: A series of dumps (one for each bunch generated), each with n_particles
data points consisting of (x, x', y, y', t, p) for the particles.

® n_particles_per _bunch - Number of particles in each bunch.

The central value of the time coordinate for the bunch.

e matched_ to_cell - The name of a beamline from which the Twiss parameters of the bunch
are to be computed.

@ emi t_X - RMS emittance for the X plane.

@ beta_X, alpha_X, eta_X, etap_X - Twiss parameters for the X plane.

9

III Po - Central momentum of the bunch.

@ sigma_dp, sigma_s - Fractional momentum spread, 0, and bunch length.

III dp_s_coupling - Specifies the coupling between sand 0, defined as (so)/((Ys(Ys).

III one_random_bunch - If non-zero, then only one random particle distribution is generated.
Otherwise, a new distribution will be generated for every simulation step.

@ enforce_rms_ values [3J - Flags, one for each plane, indicating whether to force the distri
bution to have the specified RMS properties.

@ distribution_cutoff [3J - Distribution cutoff parameters for each plane.

III distribution_type [3J - Distribution type for each plane. May be "gaussian", "hard-edge",
"uniform-ellipse", "shell", or "dynamic-aperture".

CI limit_invariants - If non-zero, the distribution cutoffs are applied to the invariants, rather
than to the coordinates.

@ symmetrize - If non-zero, the distribution is symmetric under changes of sign in the coor
dinates.

III centroid [6J - Centroid offsets for each of the six coordinates.

10

chromaticity

® type: setup command.

~ function: set up for chromaticity correction.

&chromaticity

&end

STRING sextupoles = NULL;
double dnux_dp = 0;
double dnuy_dp = 0;
double sextupole_tweek = 1e-3;
long n_iterations = 1;
STRING strength_log = NULL;

e sextupoles - List of names of elements to use to correct the chromaticities.

$ dnux_dp, dnuy _dp - Desired chromaticity values.

@ sextupole_ tweek - Amount by which to tweak the sextupoles to compute derivatives of
chromaticities with respect to sextupole strength. [The word "tweak" is misspelled "tweek"
in the code.]

@ n_iterations - Number of iterations of the correction to perform.

@ strength_log The (incomplete) name of a column format file to which the sextupole
strengths will be written. Recommended value: "%s.sst".

11

@ type: setup command.

@ function: set up for computation of the closed orbit.

&closed_orbit

&end

STRING output = NULL;
long start_from_centroid = 1;
double closed_orbit_accuracy = 1e-12;
long closed_orbit_iterations = 10;
long fixed_length = 0;
long start_from_recirc = 0;
long verbosity = 0;

@ output
written.

The (incomplete) name of an awe-format file to which the dosed orbits will be

Recommended value: "%s.clo".

File contents: A series of dumps (one for each simulation step), each containing the
horizontal and vertical closed orbit in the form of a series of (z,x,y) points. The data
point label for each point is the name of the element which ends at the given z value.

e start_from_centroid - A flag indicating whether to force the computation to use the
momentum centroid of the beam distribution.

@ closed_orbit_accuracy - The desired accuracy of the closed orbit.

@ closed_orbi t_i terations - The number of iterations to take in finding the dosed orbit.

® fixed_length - A flag indicating whether to find a closed orbit with the same length as the
design orbit by changing the momentum offset.

® start_irom_recire - A flag indicating whether to compute the closed orbit from the reeire
element in the beamline.

e verbosity - A larger value results in more output during the computations.

12

correct

@ type: setup command.

@ function: set up for correction of the trajectory or closed orbit.

&correct

&end

STRING mode = "trajectory";
STRING method = "globaP;
STRING trajectory_output = NULL;
STRING corrector_output = {NULL};
STRING statistics[2] = {NULL, NULL};
double corrector_tweek[2] = {1e-3, 1e-3};
double corrector_limit[2] = {O, O};
double correction_fraction[2] = {1, 1};
double correction_accuracy[2] = {1e-G, 1e-6};
double bpm_noise[2] = {O, O};
double bpm_noise_cutoff[2] = {1.0, 1.0};
STRING bpm_noise_distribution[2] = {"uniform", "uniform"};
long verbose = 1;
long fixed_length = 0;
long n_xy_cycles = 1:
long n_iterations = 1;
long prezero_correctors = 1;
long track_before_and_after = 0;
long start_from_centroid = 1;
long use_actual_bearn = 0:
double closed_orbit_accuracy = 1e-12;
long closed_orbit_iterations = 10;

@ mode - Either "trajectory" or "orbit", indicating correction of a trajectory or a closed orbit.

$ method - For trajectories, may be "one-to-one" or "global". For closed orbit, must be
"global" .

@ traj ectory _output - The (incomplete) name of an awe-format file to which the trajectories
or orbits will be written.

Recommended value: "%s.trj" or "%s.orb".

File contents: A series of dumps (two for each simulation step), each containing the
orbit or trajectory as a series of points of the form (z,x,y,n), where n is the number of
particles (for correction by tracking a distribution). The dump label is either "corrected"
or "uncorrected". The data point label is the name of the element that ends at the given
z location.

@ corrector_output - The (incomplete) name of an awe-format file to which information
about the final corrector strengths will be written.

- Recommended value: "%s.cor".

13

File contents: A series of dumps (several for each simulation step), each containing the
steering element strengths as a series of points of the form (z, kick). The dump label is
either "horizontal" or "vertical". The data point label is of the form
<corrector _name> [occurrenceJ [<parameter _name> J , giving the name and occurrence
of the steering element endirLg at given z locatiollo

• statistics [2J - The (incomplete) name of an awe-format file to which statistical informa
tion about the trajectories (or orbits) and corrector strengths will be written.

Recommended value: "%s.xcor" and "%s.ycor".

File contents: A series of dumps (one for each correction cycle), each containing statisti
cal information on the correction in the form a series of data points containing (iteration,
cycle, RMS kick, RMS position, maximum kick, maximum position, momentum offset).
The dump label is either "intermediate cycle" or "final cycle". The data point label is
one of "uncorrected", "corrected", and "intermediate".

• corrector_tweek[2] - The amount by which to chang~ the correctors in order to compute
correction coefficients. [The word "tweak" is misspelled "tweek" in the code.]

@ corrector_limit [2J - The maximum strength allowed for a corrector.

@ correction_fraction[2J - The fraction of the computed correction strength to actually
use for anyone iteration.

• correction_accuracy [2J - The accuracy of the correction III terms of the RMS BPM
values.

@ bpm_noise [2J - The BPM noise level.

@ bpm_noise_cutoff [2J - Cutoff values for the random distributions of BPM noise.

@ bpm_noise_distribution[2] - May be either "gaussian", "uniform", or "plus_oLITlinus".

@ verbose - If non-zero, information about the correction is printed during computations.

@ fixed_length - Indicates that the closed orbit length should be kept the same as the design
orbit length by changing the momentum offset of the beam.

@ n_xy_cycles - Number of times to alternate between correcting the x and y planes.

• n_iterations - Number of iterations of the correction.

• prezero_correctors - Flag indicating whether to set the correctors to zero before starting.

• track_before_and3fter - Flag indicating whether tracking will be done both before and
after correction.

@ start_from_centroid - Flag indicating that correction should start from the beam centroid.
For orbit correction, only the beam momentum centroid is relevant.

@ use_actuaLbeam - Flag indicating that correction should employ tracking of the beam
distribution rather than a single particle.

@ closed_orbi t_accuracy - Accuracy of closed orbit computation.

o closed_orbit_iterations - Number of iterations of closed orbit computation.

14

correct_tunes

e type: setup command.

@ function: set up for correction of the tunes.

&correct_tunes

&end

STRING quadrupoles = NULL;
double tune_x = 0;
double tune_y = 0;
long n_iterations = 1;
STRING strength_log = NULL;

@ quadrupoles - List of names of quadrupoles to be used.

III tune_x, tune_y - Desired x and y tune values. If not given, the desired values are assumed
to be the unperturbed tunes.

,. n_i terations - The number of iterations of the correction to perform.

@ strength_log - The (incomplete) name of a cOlu.rnr{-format file to which the quadrupole
strengths will be written as correction proceeds. Recommended value: "%s.qst".

15

error

@> type: setup command.

® function: assert a random error defintion for the accelerator.

&error

&end

STRING name = NULL;
STRING item = NULL;
STRING type = "gaussian";
double amplitude = 0.0;
double cutoff = 3.0;
long bind = 1;
long bind_number = 0;

long fractional = 0;
long post_correction = 0;

@ name - The possibly wild carded name of the elements for which errors are being specified.

@ item - The parameter of the elements to which the error pertains.

@ type - The type of random distribution to use. May be one of "uniform", "gaussian", or
"plus_orJllinus". A "plus_orJllinus" error is equal in magnitude to the amplitude given, with
the sign randomly chosen.

@ amplitude - The amplitude of the errors.

/I> cutoff - The cutoff for the random distribution.

/I> bind, bind_number - If bind_number is positive, then a positive value of bind indicates that
bind_number successive elements having the same name will have the same error value. If
bind is negative, then the sign of the error is alternated between successive elements.

@ fractional - A flag indicating whether the errors are fractional, in which case the amplitude
refers to the amplitude of the fractional error.

/I> post_correction - A flag indicating whether the errors should be added after orbit, tune,
and chromaticity correction.

16

@ type: setup command

@ function: overall control of random errors.

&error_control

&end

long clear_error_settings = 1;
long summarize_error_settings = 0;

STRING error_log = NULL;

e clear _error_settings - Clear all previous error settings.

<e summarize_error _settings - Summarize current error settings.

GIl error _log - The (incomplete) name of a column-format file to which error values will be
written. Recommended value: "%s.erl".

17

$ type: action command.

@ function: find the aperture in (x, y) space for an accelerator.

&find_aperture
STRING output = NULL;
STRING boundary ::: NULL;
STRING mode::: "many-particle ll

;

double xmin ::: -0.1;
double xmax = O~l;

double ymin = O~O;

double ymax::: 0.1;
long nx ::: 21;
long ny ::: 11;
long n_splits ::: 1;
double split_fraction = 0.5;
double desired_resolution::: 0.01;
long verbosity = 0;

long assume_nonincreasing = 0;
&end

* output The (incomplete) name of an awe-format file to send output to.

- Recommended value: "%s.aper".

- File contents: A series of dumps (one for each simulation step), each containing the (x,
y) coordinates of a series of stable or accepted points on the aperture boundary.

® boundary - The (incomplete) name of an mpl-format file for the boundary points of the
aperture search. Recommended value: "%s.bnd".

* xmin, xmax, ymin, ymax - Region of the aperture search.

@ mode - May be "many-particle" or "single-particle". Many-particle searching is much faster,
but does not allow interval splitting to search for the aperture boundary.

$ nx - Number of x values to take in initial search.

$ ny - Number of y values to take in search.

$ n_spli ts - If positive, the number of times to do interval splitting.

@ split_fraction - If interval splitting is done, how the interval is split.

$ desired_resolution - If interval splitting is done, fraction of xmax-xmin to which to resolve
the aperture .

• assume_nonincreasing - If interval splitting is done and if this variable is non-zero, the
search assumes that the aperture at y + f:).y is no larger than that at y.

@ verbosity - A larger value results in more output during computations.

18

@II type: setup command.

@ function: overall control of element parameter links.

&linlccontrol

&end

long clear_links = 1;
long summarize_links = 0;
long verbosity = 0;

@ clear_links - Clear all previously set links.

@ summarize_links - Summarize all current set links.

@ verbosity - A larger value results in more output during computations.

19

@ type: setup command.

@ function: assert a link between parameters of accelerator elements.

&link_elements

&end

STRING target = NULL;
STRING item = NULL;
STRING source = NULL;
STRING source_position = "before";
STRING mode = IIdynamic";
STRING equation = NULL;

19 target - The name of the elements to be modified by' the link.

~ item - The parameter that will be modified.

@ source - The name of the elements to be linked to.

@ source_position - May be one of "before", "after:', "adjacent", unearest", or "same
occurrence" .

• mode - May be either "dynamic" or "static". A dynamic link is asserted whenever the source
is changed (during correction, for example). A static link is asserted only when an error or
variation is imparted to the source, and at the end of correction.

$ equation A rpn equation for the item value in terms of the item values for the source.
To refer to the source parameter values, use the form <source-name> [<item-name> J; these
sequences must appear in capital letters.

20

matrix_output

e type: setup/action command.

@I function: generate matrix output, or set up to do so later.

&matrix_output

&end

STRING printout = NULL;
long printout_order = 1;
long full_matrix_only = 0;
STRING awe_output = NULL;
long awe_output_order = 1;
long output_at_each_step = 0;

STRING start_from = NULL;
long start_from_occurrence = 1;

iii printout - The (incomplete) name of a file to which the matrix output will be printed (as
text). Recommended value: "%s.mpr" .

• printout_order - The order to which the matrix is printed.

,. full_matrix_only - A flag indicating that only the matrix of the entire accelerator is to
be output.

iii awe_output - The (incomplete) name of an awe-format file to which the matrix will be
written.

Recommended value: "%s.mat".

File contents: A single dump, or (if output_at_each_step is nonzero) a series of
dumps, each consisting of a series of data points containing (z, C-matrix [, R-matrix
[, T-matrix]]), depending on the value of awe_output_order. C is the vector centroid
offset at the end of the accelerator. The data point label is the name of the element that
ends at the given z value.

iii awe_output_order - The order to which the matrix is output in awe format.

@ output_at_each_step - A flag indicating whether matrix output is desired at every simu
lation step.

$ start_from - The optional name of the accelerator element from which to begin concate
nation and output.

iii start_from_occurrence - If start_from is not NULL, the number of the occurrence of
the named element from which to start.

21

optimize

® type: action command.

@ function: perform optimization.

&optimize
long summarize_setup = 0;

&end

@ summarize_setup - A flag indicating, if set, that a summary of the optimization parameters
should be printed.

22

optimization_constraint

® type: setup command.

iii function: define a constraint for optimization.

&optimization_constraint
STRING quantity = NULL;
double lower = 0;
double upper = 0;

&end

@ quantity - The quantity to be constrained, given as a rpn expression in terms of the
optimization variables, the optimization covariables, and and the "final" parameters (see the
entry for run_setup for the last of these). The optimization (co)variables are referred to as
<element-name> [<parameter-name>] , in all capi tal letters.

@ lower, upper - The lower and upper limits allowed for the expression.

23

optimization_covariable

@ type: setup command.

@ function: define an element parameter to be varied as a function of optimization parameters.

&optimization_covariable
STRING name = NULL;
STRING item = NULL;
STRING equation = NULL;

&end

'<11 name - The name of the element.

\11 item - The parameter of the element to be changed.

\11 equation - A rpn equation for the value of the pai'ameter in terms of the values of any
parameters of any optimization variable. These latter appear in the equation in the form
<element-name> [<parameter-name>] , in all capital letters.

24

optimization_setup

$ type: setup command.

® function: define overall optimization parameters and methods.

&optimization_setup

&end

STRING equation = NULL;
STRING mode::: "minimize";
STRING method = "simplex";
double tolerance = -0.01;
double target = 0;
long soft_failure = 1;
long n_passes = 2;
long n_evaluations = 500;
STRING log_file = NULL;

@ equation - A rpn equation for the optimization function, expressed in terms of any param
eters of any optimization variables and the "final" parameters of the beam (as recorded in the
final output file available in the run_setup namelist). The optimization variables appear
in the equation in the form <element-name> [<parameter-name> J.

@ mode - May be either "minimize" or "maximize".

III method - May be one of "simplex", "grid", and "sample".

III tolerance - The convergence criterion for the optimization, with a negative value indicating
a fractional criterion.

III target - The value which, if reached, results in immediate termination of the optimization,
whether it has converged or not.

1/1 soft_failure - A flag indicating, if set, that failure of an optimization pass should not
result in termination of the optimization.

® n_passes - The number of optimization passes made to achieve convergence ("simplex"
only).

® n_evaluations - The number of allowed evaluations of the optimization function. If simplex
optimization is used, this is the number of allowed evaluations per pass.

® log_file - A file to which progress reports will be written as optimization proceeds.

25

optimization_variable

lID type: setup command.

lID function: defines a parameter of an element to be used in optirnization.

&optimization_variable
STRING name = NULL;
STRING item = NULL;
double lower_limit = 0;
double upper_limit = 0;
double step_size = 1;

&end

• name - The name of the element.

lID item - The parameter of the element to be varied .

• lower_limit, upper_limit - The lower and upper limits allowed for the parameter. If these
are equal, the range of the parameter is unlimited.

estep_size - The initial step size ("simplex" optimization) or the grid size in this dimension
("grid" or "sample" optimization). .

26

print_dictionary

$ type: action command.

,. function: print dictionary of recognized accelera.tor elements.

&print_dictionary
STRING filename = NULL;

&end

e filename - The name of a text file to which the dictionary will be printed.

27

rpn_expreSSl.on

@ type: action/setup command.

e function: pass an expression directly to the rpn submodule for execution.

&rpn_expression
STRING expression = NULL;

&end

€I expression - A rpn expression. This expression is executed immediately and can be used,
for example, to read in rpn commands from a file or store values in rpn memories.

28

® type: action command.

® function: save the current accelerator element and beamline definitions.

&:save_lattice
STRING filename = NULL;

&:end

® filename - The (incomplete) name of a file to which the element and beamline definitions
will be written. Recommended value: "%s.new".

29

steering_element

@ type: setup command.

€I function: setup for use of a given parameter of a given element as a steering corrector.

€I note: any use of this command disables the built-in definition of HKICK, VKICK, and
HVKICK elements as steering elements.

&steering_element
STRING name = NULL;
STRING item = NULL;
STRING plane = "h";
double tweek = 1e-3;
double limit = 0;
STRING strength_log = NULL;

&end

® name - The name of the element.

® item - The parameter of the element to be varied.

€I plane - May be either "h" or "v", for horizontal or vertical correction.

@ tweek - The amount by which to change the item to compute the steering strength.

€I limit - The maximum allowed absolute value of the item.

e strength_log - The (incomplete) name of a column-format file to which the strengths of
the item will be written as correction proceeds.

30

trace

o type: setup command.

$ function: set up for tracing of program execution.

@ note: this option can dramatically slow down execution.

&trace

&end

long trace_on = 1;
long heap_verify_depth = 0;

STRING filename = NULL;

@ trace_on - A flag indicating, if set, that tracing should be activated.

o heap_verify _depth - The depth of subroutine calls to which memory heap checking should
be performed.

$ filename - The name of a file in which the call stack will be recorded.

31

@ type: action/setup command.

$ function: compute and output Twiss parameters, or set up to do so.

&twiss_output

&end

STRING filename = NULL;
long matched = 1;
long output_at_each_step = 0;
long output_before_tune_correction = 0;
long final_values_only = 0;

double beta_x = 1;
double alpha~x = 0;
double eta_x = 0;
double etap_x = 0;
double beta_y = 1;
double alpha_y = 0;
double eta_y = 0;
double etap_y = 0;

IIiI filename - The (incomplete) name of an aye-format file to which the Twiss parameters will
be written.

Recommended value: "%s.twi".

File contents: A single dump, or (if output_at_each_step is nonzero) a series of dumps,
each containing a series of data points giving a z location and the Twiss parameters at
that location. The data point label is the name of the element that ends at the given
z location. Each dump has auxiliary variables giving the tunes, chromaticities, and
acceptances. If final_ values_only is nonzero, only the values for the last z location
are present in the tables.

@ matched - A flag indicating, if set, that the periodic or matched Twiss parameters should
be found.

@ output_at_each_step - A flag indicating, if set, that output is desired at each step of the
simulation.

IIiI output_before_ tune_correction - A flag indicating, if set, that output is desired both
before and after tune correction.

IIiI final_ values_only - A flag indicating, if set, that only the final values of the Twiss pa
rameters should be output, and not the parameters as a function of z.

IIiI beta_X, alpha_X, eta_X, etap_X - If matched is zero, the initial values for the X plane.

32

® type: setup command.

• function: set up the number of simulation steps and passes.

&run_control

&end

long n_steps = 1;
double bunch_frequency = 0;

long n_indices = 0;
long n_passes = 1;

• n_steps - The number of separate repetitions of the action implied by the next action
command. If random errors are defined, this is also the number of separate error ensembles.

e bunch_frequency - The frequency to use in calculating the time delay between repetitions.

• n_indices - The number of looping indices for which to expect definitions in subsequent
vary_element commands.

® n_passes - The number of passes to make through t.he beamline per repetition.

33

run_setup

e type: setup command.

@ function: set global parameters of the simulation and define primary input and output files.

&run_setup

&end

STRING lattice = NULL;
STRING use_beamline = NULL;
STRING rootname = NULL;
STRING output = NULL;
STRING centroid = NULL;
STRING sigma = NULL;
STRING final = NULL;
STRING acceptance = NULL;
STRING losses = NULL;
STRING magnets = NULL;
long combine_bunch_statistics = 0;
long wrap_around = 1;
long default_order = 2;
long concat_order = 0;
long print_statistics = 0;
long random_number_seed = 987654321;
long correction_iterations = 1;
double p_central = 0.0;
STRING expand_for = NULL;

@ lattice - Name of the lattice definition file.

@ use_beamline - Name of the beamline to use.

@ rootname - Filename fragment used in forming complete names from incomplete filenames.
By default, the filename minus extension of the input file is used.

@ output - The (incomplete) name of an awe-format file into which final phase-space coordi
nates will be written.

Recommended value: "%s.out".

File contents: A series of dumps (one for each simulation step), each containing a series
of data points of the form (x,x',y,y', t,p). Each point corresponds to one particle that
was transmitted through the entire run.

@ centroid - The (incomplete) name of an awe-format file into which beam centroids as a
function of z will be written.

Recommended value: "%s.cen".

File contents: A series of dumps (one for each simulation step), each consisting of a series
of data points containing (z, Po, n, (x), (x'), (y), (y'), (s), (8)). These are, respectively, the
z location, the central momentum, the number of particles, the average position and slope

34

in the two planes, the average distance traveled, and the average momentum offset. The
data point label for each point is the name of the element that ends at the given z
location.

III sigma - The (incomplete) name of an awe-format file into which the beam sigma matrix as
a function of z will be written.

Recommended value: "%s.sig".

File contents: A series of dumps (one for each simulation step), each consisting of a series
of data points containing (z, Sigma, M, 0-). These are, respectively, the z location, the
sigma matrix, the maximum particle amplitudes, and the RMS beam sizes. Note that
the diagonal elements of the sigma matrix have had the square-root taken. The data
point label for each point is the name of the element that ends at the given z location.

iii final - The (incomplete) name of an awe-format file into which final beam and transport
parameters will be written.

Recommended value: "%s.fin".

File contents: A series of dumps (one for each simulation step), each consisting of a
single data point containing, in order, the RMS beam sizes, the beam centroids, the off
diagonal elements of the beam sigma matrix, the number of particles, the transmission
fraction, the lattice (or central) momentum, the average beam momentum, the average
beam kinetic energy, the geometric and normalized RMS emittances, the transverse
beam widths, the bunch length, the total fractional bunch momentum interval, and the
elements of the R matrix. The specific names of these so-called "final" parameters can
be obtained using the -list option of awe. Note that the "final" parameters can be
used in optimization expressions (see the entry for optimization_setup).

iii acceptance - The (incomplete) name of an awe-format file into which the initial coordinates
of transmitted particles will be written.

Recommended value: "%s.acc".

File contents: A series of dumps (one for each simulation step), each consisting of a series
of points containing the initial phase-space coordinates of all accepted (Le., transmitted)
particles.

iii losses - The (incomplete) name of an awe-format file into which information on lost particles
will be written.

Recommended value: "%s.los".

File contents: A series of dumps (one for each simulation step), each consisting of a series
of points containing the z location and the phase-space coordinates of a lost particle at
the time of loss .

• magnets - The (incomplete) name of an mpl-format file into which a magnet layout repre
sentation will be written. Recommended value: "%s.mag".

iii combine_bunch_statistics - A flag indicating whether to combine statistical information
for all simulation steps. If non-zero, then the sigma and centroid data will be combined
over all simulation steps.

35

~ wrap_around - A flag indicating whether the z coordinate should wrap-around or increase
monotonically in multipass simulations.

CI default_order - The default order of transfer matrices used for elements having matrices.

@ concat_order - If non-zero, the order of matrix concatenation used.

@ print_statistics - A flag indicating whether to print information as each element IS

tracked.

@ randoID_number_seed - A seed for the random number generators. If zero, a seed will be
generated from the system clock.

@ correction_iterations Number of iterations in tune and chromaticity correction.

@ p_central - Central momentum of the beamline, about which expansions are done.

@ expand_for - Name of an awe-format file containing particle information, from which the
central momentum will be set. The file contents are the ~ame as required for elegant input
with the awe_beam namelist.

36

.. type: action command .

.. function: track particles.

&track
long center_on_orbit = 0;
long center_momentum_also = 1;

&end

track

.. center _on_orbi t - A flag indicating whether to center the beam transverse coordinates on
the closed orbit before tracking.

o center_momentum_also
also.

A flag indicating whether to center the momentum coordinate

37

vary_element

e type: setup command.

@ function: define an index and/or tie a parameter of an element to it.

&vary_element

&end

long index_number = 0;

long index_limit = 0;

STRING name = NULL;
STRING item = NULL;
double initial = 0;

double final = 0;

$ index_number - A non-negative integer giving the number of the index.

e index_limit - A positive integer giving the number of values the index will take.

e name - The name of an element.

e item - The parameter of the element to tie to the in1ex.

@ initial, final - The initial and final values of the parameter.

38

3 Accelerator and Element Description

As mentioned in the introduction, elegant uses a variant of the MAD input format for describing
accelerators. With some exceptions, the accelerator description for one program can be read by
the other with no modification. Among the differences:

• elegant does not support the use of equations to compute the value of a quantity. The
link_element namelist command can be used for this purpose, and is actually more flexible
than the method used by MAD.

$ elegant does not support substitution of parameters in beamline definitions.

$ elegant contains many elements that MAD does not have, such as kick elements and numer
ically integrated elements .

• The length of an input line is not limited to 80 characters in elegant, as it is in MAD.
However, for compatibility, any lattice created by elegant will conform to this limit.

elegant's print_dictionary command allows the user to obtain a list of names and short
descriptions of all accelerator elements recognized by the program, along with the names, units,
types, and default values of all parameters of each element. At present, this serves as the only
documentation of this information. The reader is referred to the MAD manual[2] for details on sign
conventions for angles, focusing strength, and so forth. .

39

4 Examples

Example runs and post-processing files are included along with the distribution of elegant. These
are drawn from the author's research and all concern various aspects of the Argonne Positron
Accumulator Ring (PAR) and its injection and ejection lines (LTP and PTB, respectively).

The examples are intended to demonstrate program capabilities with minimal work on the
user's part. Each demo is invoked using a command (a C-shell script) that can both run elegant
and post-process the output. After running the demo, the output can be viewed again without
rerunning elegant by invoking the command with the word review added to the command line.
Including the word hardcopy on the command line results in the graphs being sent to your default
printer, which is assumed to accept Postscript.

The post-processing is typically handled by a lower-level script that is called from the demo
script. These lower-level scripts are good models for the creation of customized scripts for user
applications.

1. par10h* - These files provide a demonstration of Twiss parameter computation, tracking,
element variation, and map analysis. The lattice is defined with kick elements, which are
used for all tracking. After computation of the Twiss parameters for the PAR[6], a series
of particles are tracked with different initial x coordinates. Finally, the tunes and Twiss
parameters are computed by tracking; they are very close to the analytical values. The post
processing commands make phase-space plots and plots of FFTs of the motion, showing that
the motion becomes chaotic at the stability limit. To execute this demo, type the command
par10h.

2. par _symph - These files provide a demonstration of the symplecticity of tracking with
elegant kick elements. A single large-amplitude particle is tracked for 214 turns. The invari
ant Jx is then computed and plotted as a function of turn number. To execute this demo,
type the command par_sympl. The post-processing takes quite some time because of the
very large number of points.

3. par _chrom* - These files provide a demonstration of computing chromaticity and other
parameters as a function of momentum offset using map analysis. The lattice is the same as
par10h.l te, except all of the elements are implemented using second-order matrices. Hence,
the chromaticity from tracking should be nearly identical to the analytical results computed
by the twiss_output command, which it is. To run this demonstration, enter par _chromo
The reader may wish to try this demo again using ksbend, csbend, or nibend elements in
place of the sbend elements, and kquad (ksext) elements in place of the quad (sext) elements.

4. par_damp* - These files provide a demonstration of damping partition calculation using
single turn tracking with synchrotron radiation. The expected value of the longitudinal
damping partition for PAR is Jo = 1.758. The user may edit the lattice file, par_damp .He,

to invoke a different element for the dipole magnet. In particular, definitions for numerically
integrated dipoles with extended fringe-fields are present. To execute this demo, type the
command par_damp.

5. par_dynap* - These files provide a demonstration of dynamic aperture runs for a series of
randomized machines. Also exhibited here are orbit, tune, and chromaticity correction. The
post-processing commands make a plot of the dynamic apertures with the physical aperture
superimposed. (The orbcorr_plots script can also be used to plot orbit correction informa
tion.) To execute this demo, type the command par _dynap. The lattice has been stripped

40

down so that only a few of the more significant multipoles are present. Also, fictitious extra
sextupoles have been added to compensate the lack of second-order edge terms in the bending
magnets (these would result in nonsymplectic tracking if included). Still, the running time is
many hours.

6. ej optk* - These files provide a demonstration of the optimization of a multi-turn ejection
bump for PAR, using a time-dependent kicker waveform (formed from two cubic splines).
After optimization, the lattice is tracked with a realistic beam distribution to verify good
transmission and show the centroid position vs z over three turns. To execute this demo,
type the command ejoptk.

7. Itp_te* - These files provide a demonstration of transport line simulation. The Linac-to
PAR transport line is simulated with errors and trajectory correction to predict the trans
mission losses and the steering error at the exit of the septum. The trajectory 'correction
uses tracking of a beam distribution, which is slower than tracking the centroid, but which
produces better results in the presence of the large momentum spread. The reader may wish
to verify this by turning off this feature and running the simulation again. To execute this
demo, type the command Itp_te. The running time for this demo is quite long.

41

A Use of awe

awe format is a space-efficient binary format appropriate for storing large amounts of data, and
is the primary format in which elegant writes output. Each awe file starts with a header, which
defines the contents of the file. A series of "dumps" follows the header; these dumps are essentially
separate tables of data. Each dump consists of a series of "points," each of which is basically a row
of the table. The header defines the names and units of the columns of the tables. In addition,
it defines the names and units of "auxiliary variables," which are quantities associated with each
table that may take different values from dump to dump. Each dump of an awe file has a string
label associated with it and each point of the dump has an additional string label associated with
it. awe allows the user to select the data to be output based on wildcard matching with these
labels, as well as by "filtering" based on the values of the data elements in the current line of the
table.

A.I Output Format Options

The program awe allows the user to extract data from awe-format files and create four different
types of output:

* mpl-format output of any two quantities from the table. The basic usage for this type of
output is:

awe <input_filename> <output_file_rootname>
-first=<quantity_name> [=<alias>] , ... -second=<quantity_name> [=<alias>] , ...
[-process_dump [=<first_processing_mode>,<second_process ing_mode>]
[-separate_dumps]

The output file root name is the first part of a filename that awe will use to create filenames of
the form rootname_firstname_secondname. out. The -first and -second switches allow
one to specify the names of the first and second quantities for the output files; if you give a
list of first and second quantities, they are paired for output in the order given. A quantity
may also be assigned an "alias", which is simply a new name that will be used to generate
the filename and make the labels in the mpl file.

The -process_dump option allows processing of an entire table to produce a single number for
each column. The possible processing options are no, average, rms, sum, standard_deviation,
mean_absolute_deviation, median, minimum, maximum, largest, first, last, and count.

The -separate_dumps option causes awe to create a separate mpl file for every dump in the
input file. In elegant output, each dump typically corresponds to a different simulation step
(i.e., a different randomized machine and/or beam, or a different point on the grid being
swept). If this option is given, the filenames are of the form
rootname_dumpnumber_firstname_secondname.out.

@ mpl-format output of one or more tabulated quantities as a function of an auxiliary variable,
with optional processing of the quantity. The basic format for this option is:

awe input_filename output_file_rootname
-sequence[=auxiliary_name[=alias]] -quantity=quantity_name[=alias] , ...
[-process_dump=<processing_mode>]

42

The filenames created for the output data are of the form
rootname_auxiliaryname_quanti tyname. out. Note that the -process_dump syntax is slightly
different, since only one processing mode is required.

" column-format output of any number of quantities from the table. This produces a human
readable file that can also be used with the column program (see below). The basic usage for
this option is:

awe input_filename -table=output_filename,quantity_name[,quantity_name ...]

At present, dump processing is not available with column-format output; it will be added in
the future.

" contour-format binary output for use with the contour program.

For all of these output options except the last, the use~ may specify a printf format string
to tell awe how the data should be printed. This is done using the -format option. The default
for mpl-format is "%13.8e %13.8e", while the default for column-format is "%13.8e " for each
individual element. As an example, suppose one were extracting three quantities-one desired in
floating-point format to two decimal places and the others in exponential format to six places; this
would be accomplished by including

-format="%.2f %.6e %.6e "

on the command line. Note that the extra space at the end of the string is necessary to separate
the last number from the label of the data point.

A.2 Selection of Data

Selection of data may be done using the -dumps, -choose_dump, -filter, and -match_label
options. Of these, the first two allow selection of which dumps to use, while the last two allow
selection of which points to use from within each dump.

e -dumps - Specifies that only dumps with certain "dump numbers" are to be included in
the output. The dump number for an awe file starts at zero and increments by one for each
dump. The syntax for this option is

-dumps={<number> I «begin>,<end>,<interval» I <begin>,' ... ',<end> }, ...

For example, if one wanted dump 1, all dumps from 10 to 20, and every other dump from 20
to 40, one would give

-dumps=1,10, ... ,20,(22,40,2)

e -choose_dump - Specifies that only those dumps with labels matching a given string are to
be included in the output. The string may include UNIX-style wildcards.

e -filter - Specifies that only those points for which the named quantity lies between the
two limits given are to be included in the output.

e -match_label - Specifies that only those points with labels matching a given string are to
be included in the output. The string may include UNIX-style wildcards.

43

A.3 Other Options

In this section are listed other options that can be used with awe:

® -list_quantities [={'yes' I 'no' I 'only'}] -This causes a list oft he table quantities
and auxiliary quantities to be printed to the screen. If only is given, the program exits
immediately after doing this.

® -verbose - If given, this option causes awe to print information about each dump as it is
processed .

• -sort=<quanti ty _ to_sort_by> [, <number _ to_keep> [, 'descending']] - This causes each
dump to be sorted prior to any processing or output. If number _ to_keep is positive, only the
first number _ to_keep data points are retained after the sort.

EI -sample_interval=<n> - This option causes awe to use only every nth data point from each
table.

® -define_quantity=<quantity-name>, <quantity_unit>, <rpn-expression> - This option
defines a new quantity, to be added to each row of each table, in terms of existing or previ
ously defined quantities. The definition is in terms of a rpn expression for the value of the
new quantity. The value of any quantity for the current table and row is available by giving
the name of the quantity. Similarly, the value of any auxiliary varirable for the current table
is available by giving the auxiliary variable name.

® -rpn_expression=<rpn-expression> - This option passes a string directly to the rpn cal
culator subprogram. It is typically used to store values into memory for use in definitions.

@ -rpn_defns_file=filename - This option allows the user to specify the name of a file
containing rpn statements that is to be read in place of the default rpn definitions file. By
default, awe reads the file given by the environment variable RPN_DEFNS.

44

B The mpl Scientific Toolkit

The mpl Scientific Toolkit is a group of programs, written in the C programming language[lJ,
sharing a common data file format. The Toolkit is a powerful aid to a scientist's use of computers.
alleviating much of the tedium associated with the analysis and interpretation of data.

In order to enhance the productivity of the Toolkit, the programs not only use mpl format
(described below) for their input data, but they also create new data sets in the same format, when
it is at all meaningful to do so. Hence, one can perform a sequence of operations on one's data by
invoking a sequence of Toolkit programs.

The user interface for the programs is command-Hne-based, rather than menu-based or query
based. That is, the programs in the Toolkit are executed by typing the program name followed by
a list of command-line options. This makes the programs more amenable to use in batch files and
allows argument substitution through the command language.

C mpl Data Set Format

An mpl data set is an ordinary text file, such as might be created using a text editor. The lines
of the file are read and processed one at a time, and no line may be longer than 1024 characters.
The first four lines are descriptive text (as opposed to numeric data). The first line should be the
name of the abscissa (or "x" variable), while the second line should be the name of the ordinate
(or "y" variable). The third and fourth lines will be placed at the bottom and top of the plot,
respectively, when the data set is plotted with mpl. The conventional format for the first and
second lines is <quantity-name> «quantity_unit»; while this is not required, some programs
detect this format in order to be able to alter the units automatically.

The fifth line contains the number of data points in the data set. It should be equal to or larger
than the number actually in the data set. A warning will appear if this number is different from
the actual number of points. (The program fixcount is available to count the points for you and
put the right number on the fifth line of the data file.)

Every subsequent line contains one data point, each of which consists of two through four
numbers. The first two values are x and y, respectively. If there are three values, the third is
interpreted as the uncertainty (or sigma) for the y value. If there are four values, the third is
interpreted as the x uncertainty, and the fourth as the y uncertainty. The number of values that
are taken from each line is established by the number of values given for the first data point. Thus,
if the first data point contains only two values, then only the first two values of each subsequent
data point are used. Similarly, if the first data point contains four values, then all subsequent data
points are expected to contain four values.

The data set ends when the file ends, or when the number of points specified has been reached,
whichever comes first.

The format of the data is very free. Any non-numeric ASCII character (i.e., any character other
than a digit, a plus or minus sign, or a period) can be used as a separator between data elements
on a single line. Spaces and tabs are preferred, but solely for aesthetic reasons. Any line beginning
with an exclamation point is treated as a comment, and ignored.

C.l Command-Line Format of the mpl Programs

The next section contains short descriptions of the programs in the mpl toolkit at this time. A few
of these programs are for very specific applications, though most are of general application. Some
are quite simple, a few are downright trivial, while others are very sophisticated.

45

This list does not constitute a user's manual for these programs. Rather, the programs are
intended to be self-documenting, since each program will respond with help information if it is
run improperly. Hence, the user may obtain help for any program simply by running the program
without any command-line input. The general form of the "usage message" that each program
responds with is

usage: program_name required_argument1 required_argument2
[optional_argument_1J [optional_argument_2J
{choice1.1 I choice1.2 I ... }
{choice2.1 I choice2.2 I ... }
[{optional_choice1.1 I optional_choice1.2 ... }J
[{optional_choice2.1 I optional_choice2.2 ... }]

In words: required arguments (e.g., the name of the input data set) are listed without delimiters.
Optional arguments (usually a program-control "switch", or an optional output filename), are
delimited by square brackets. Sets of arguments that the m;er must choose one and only one of
are grouped by curly braces and separated by vertical bars. Optional sets of arguments that the
user may choose one (and only one) of are grouped by curly braces inside square brackets.

Options, or "switches", are of the general form

-keyword[=value1[,value2 ... JJ,

with several alternative forms recognized: you may use I instead of -, and : or , instead of "',
Any keyword may be abbreviated when enter on the command line, so long as enough characters
are supplied to make the keyword uniquely identifiable. If the value listed in the usage message
has single quotes around it, then the value must be typed literally (i,e., as in -average=rms)i
you should not type the single quotes yourself in running the program. Such values may, like the
keywords, be abbreviated. In contrast, a value listed in double quotes represents a string that may

need to be enclosed double quotes (if, for example, it contains spaces, as in -title=' 'x vs y' ').
In what follows, the phrase "data set" refers to data stored in an mpl format file, which consists

of a set of data points (xn, Yn) with optional uncertainties aYn and a xn • Unless otherwise stated,
each program writes its results as a new data set in a file of the user's choice. Most programs
accept the -format argument to allow the user to select the output format of the data; refer to the
previous section for a discussion.

C.2 Descriptions of the mpl Programs

add: Adds (or subtracts) two data sets, with error propagation. Normally, the ordinates are added
assuming that the abscissae match. Optionally, the abscissa can be added. There is also an
option to match the abscissae before adding the ordinates, or vice- versa.

column: Extracts data from generic tables, such as might be output by any number of programs,
and creates data sets. Hence, a program that prints rows of quantities in many columns can
be interfaced to the Toolkit via column. (A better way to accomplish this is to modify the
program to write its data in either mpl or awe format.) Also, column extracts data from
column-format files into mpl-format files.

combine: Combines any number of data sets into a new data set, sorting the data sets by the first
abscissa value in each set.

46

convol: Performs discrete Fourier convolution or deconvolution of two data sets, assuming that
the range and number of points is the same for both sets.

deriv: Takes the derivative of a data set, using

(1)

where Xa = (xn+m + xll - m)/2 and where m is specified by the user. Strictly, the points should
be equispaced (if not, use m=l).

dsc: The Data Set Calculator is one of the most powerful programs in the Toolkit, being something
like a command-line spreadsheet. It allows use of an arbitrary number of input data files to
create an arbitrary number of output data files using user-specified equations for the new
data.

envelope: Processes any number of input files, assumed to 'have identical numbers of points and
identical abscissa values, producing optional output files containing the minima, maxima, av
erages, mean-absolute-deviations, standard-deviations, RMS values, and/or sums of ordinate
values at each abscissa.

filter: Performs digital filtering of a data set by doing an FFT, applying the filter, then doing
an inverse FFT. Supports low-pass and high-pass filters' with linear roll-off, as well as Parzen
windowing[7] of the data.

fiteval: Assumes that one data set is a fit to the other, and evaluates how good a fit it is.

fixcount: Fixes the point count of data sets. fixcount will attempt to simply overwrite the
existing point count, if the fifth line of the data set has a sufficient number of characters to
allow this without running over onto the next line stored in the file. E.g., if the fifth line
contains C 'l<return> l l and the actual point count is 100, fixcount will have to re-write the
entire file to make room for the two zeroes. If, however, the fifth line has a number of trailing
spaces, all fixcount need do is replace some of the trailing spaces with zeroes. This is not
a trivial concern for data sets with thousands of points, and hence it is a good idea to put
trailing spaces on the fifth line of each data set.

fft: Performs the FFT of a data set, producing a new data set with the magnitude vs. the
frequency. Also does optional windowing[7] and provides output of real and imaginary com
ponents. Will work in either single or double precision, and will optionally pad or truncate
your data to achieve 211 data points (necessary for the FFT).

fyhm: Computes the full-width at half-maximum, with optional smoothing.

gfi t: Fits a gaussian to a data set, finding the sigma, mean, baseline, and height, with the option
of generating a new data set containing the fit evaluated at a series of points.

ggen: Generates a data set from evaluation of a gaussian at equispaced points.

hist: Makes histograms and cumulative distributions of one or more data sets, with optionally
filtering and weighting of the histogrammed variable by the other variable. Optionally does
various normalizations of the histogram and does statistical analysis of the data.

47

integ: Computes the integral of a data set using the trapizoid rule with error propagation, creating
a new data set with the integral as a function of the abscissa.

interp: Does polynomial interpolation on a data set, using whatever order of polynomial the user
requests, with options for creating a new data set with interpolated values at equispaced
points and for transforming one variable of a data set via interpolation on the first data set.

lsi: Does error-weighted least-squares fits to any order using either ordinary polynomials or
Chebyshev T polynomials. Options for fitting only even or odd polynomials, for fitting
only specified orders, and for automatic elimination of orders that (though requested) are not
genuinely present. Also provides difference data sets and data sets from evaluation of fitted
polynomials.

mpl: Versatile plotting program for multiple data sets. Allows zooming, point plotting, symbol
plotting, and much more. Supports many common graphic output devices through use of
drivers from GNUPLOT. Has Greek and scientific ch<:-racter sets, with subscripting, super
scripting, and in-line control of character attributes. The following "escape sequences" are
recognized in character strings: .

L $g, $r : switch to Greek or Roman characters.

2. $a, $b, $n: go to Above (superscript), Below (subscript), or Normal script.

3. $s, $e: Start and End special (mathematical) sym,bols.

4. $i, $d: Increase (x 1.5) or Decrease (/1.5) character size.

5. $t, Sf: go to Taller or Fatter letters (these are inverses of each other).

6. $u, $v: displace text vertically Upward or downward (respectively) by one-half character
height.

7. $h: back-space one-half character width.

mult: Does pair-wise multiplication (or division) of the ordinates (or abscissae, or both) of two
data sets, with error propagation. If the data sets are of unequal length, the program will
optionally try to line up the abscissae before multiplying.

murge: Merges two data sets, in the sense of taking the abscissae and ordinates of the new data
set from the abscissae and ordinates of two other data sets, as specified by the user. (The
strange spelling is to avoid confusion with the VAX/VMS MERGE utility.)

params: Computes many parameters of a series of data sets, including positions, heights and
sharpnesses of peaks, positions and values of minima and maxima, averages, and medians.

peakfind: Finds peaks in a data set, with optional smoothing and a user-defined threshold.

qsort: Sorts a data set into ascending (or descending) order by the abscissa, subsorting by the
ordinate, with optional elimination of duplicate points.

relabel: Alters the labels in an mpl file, composing new labels from the old labels, from those in
another file, or using new labels supplied on the command line.

rescale: Arguably the most powerful program in the toolkit. Performs very versatile transfor
mations of a data set, including normalization, centering, scaling and offsetting, taking the
logarithm, and more. Data sets may be sparsed, windowed, reordered, and the abscissae and
ordinates may be swapped. Propagation of errors can be performed if sigmas are given in the
data set. rescale will also accept user-defined transformations, specified as rpn equations.

48

rndgen: Generates random-number pairs, with gaussian and uniform distributions supported. The
random number generator uses a random shuffling routine with two linear congruential gen
erators.

smooth: Smooths a data set by multipass averaging over adjacent points.

setlog: Performs set logic on two data sets. For example, setlog will find all the data points in
one data set but not the other, or all the data points in both sets. User-specified tolerances
are accepted to determine when two points are "the same."

stats: Does statistical analyses of a data set, computing various moments, widths, and cumulative
distribution parameters. Also gives the minimum, maximum, and spread.

tellipse: Creates a data set containing points along an ellipse defined in terms of the Twiss
parameters and emittance.

total: Creates a new data set with

(2)

zerofind: Finds locations of zeros in a data set, with interpolation between points.

49

D The rpn Calculator

The program rpn is a Reverse Polish Notation programmable scientific calculator written in C. It is
incorporated as a subprogram into elegant, awe, and a number of the mpl programs. It also exists
as a command-line program, rpnl, which executes its command-line arguments as rpn operations
and prints the result before exiting. Use of rpn in any of these modes is extremely straightforward.
Use of the program in its stand-alone form is the best way to gain familiarity with it. Once you've
entered rpn, entering "help" will produce a list of the available operators with brief summaries of
their function. Also, the rpn definitions file rpn. defns, distributed with elegant, gives examples
of most rpn operation types.

Like all RPN calculators, rpn uses stacks. In particular, it has a numeric stack, a logical stack,
and a string stack. Items are pushed onto the numeric stack whenever a number-token is entered, or
whenever an operation concludes that has a number as its result; items are popped from this stack
by operations that require numeric arguments. Items are pushed onto the logical stack whenever
a logical expression is evaluated; they are popped from this stack by use of logical operations
that require logical arguments (e.g., logical ANDing), or by conditional branch instructions. Items
enclosed in double quotes are pushed onto the string stack; items are popped from this stack by
use of operations that require string arguments (e.g., formatted printing).

rpn supports user-defined memories and functions. To create a user-defined memory, one simply
stores a value into the name, as in "1 sto unity"; the memory is created automatically when rpn
detects that it does not already exist. To create a user-defined function, enter the "udf" command;
rpn will prompt you for the function name and the text that forms the function body. To invoke
a UDF, simply type the name.

A file containing rpn commands can be executed by pushing the filename onto the string stack
and invoking the "@" operator. rpn supports more general file I/O through the use of functions
that mimic the standard C I/O routines. Files are identified by integer unit numbers, with units 0
and 1 being permanently assigned to the terminal input and terminal output, respectively.

50

References

[1] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, N.J., second edition, 1988.

[2] H. Grote, F. C. Iselin, "The MAD Program-Version 8.1," CERN jSLj90-13(AP), June 1991.

[3] K. 1. Brown, R. V. Servranckx, "First- and Second-Order Charged Particle Optics," SLAC
PUB-3381, July 1984.

[4] M. Borland, "A High-Brightness Thermionic Microwave Electron Gun," SLAC-Report-402,
February 1991, Stanford University Ph.D. Thesis.

[5] H. A. Enge, "Achromatic Mirror for Ion Beams," Rev. Sci. Inst., 34(4), 1963.

[6] M. Borland, private communication.

[7] W. H. Press, et aI, Numerical Recipes in C, Cambridge University Press, Cambridge, 1988.

51

